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Fourier transforms and scattering intensities of discrete circles, axes, cylinders, and of tubes con- 
sisting of concentric cylinders, are derived and discussed. An expression resembling the structure 
factor of crystals is given. For all these cases the intensity function shows bands with sharp edges 
on the inside and long tails in a direction perpendicular to the Z axis (chosen parallel to the axis 
of the object). The locations in reciprocal space of the edges are determined by the geometry, of 
the nets .on which the cylinders are based, while the region close to the Z axis is characteristic 
mainly of the large-scale structure of the object. Finally, the scattering due to a continuously 
wound-up sheet, consisting of one or several layers of unit cells, is discussed. 

Introduction 

Electron-diffraction patterns of single specimens of 
tubular fragments of halloysites obtained by Taggart, 
Milligan & Studer (1954) make it desirable to develop 
the diffraction theory of such objects. These tubular 
fragments consist of one or more wound-up sheets, 
each of which is made up of one or more layers. The 
radii of the tubes are large compared to the linear 
dimensions of the 'unit cells' of the basic structure of 
the layers. I t  is not certain, however, how the sheets 
are wound up in detail. Each tube, for instance, may 
contain a set of concentric circular cylinders, each 
consisting of one continuous sheet. Another possibility 
is that  each halloysite tube contains a number of 
turns of the same sheet, wound up in a spiral fashion. 
The electron-microscopic evidence of Taggart, Milligan 
& Studer (1954) favors this latter concept. 

This paper represents a theoretical discussion of the 
Fourier transforms and scattering intensities of discrete 
tubular objects. The two-dimensional cases of a cir- 
cular set of points and of a discrete circular arc are 
treated first. A discussion of the nature of the trans- 
forms, all of which contain Bessel functions of high 
orders, is given, as well as of the squares of their 
absolute values. I t  involves asymptotic expansions 
and averaging over the oscillatory nature of the Bessel 
functions. Next, the transform of the three-dimensional 
cylinder is obtained by adding the contributions of 
circles which are spaced evenly and in definite phase 
relation along an axis perpendicular to their planes. 
The scattering intensities of tubes consisting of con- 
centric cylinders will be described in detail, and an 
expression analogous to the structure factor of crystals 
will be derived. The scattering characteristic of spiral 
cylinders which result from winding, up a continuous 

.sheet will be discussed in a semi-quantitative fashion 
only. Finally, a scattering photograph will be discussed. 

T r a n s f o r m s  of circles and c i rcular  arcs  

Let _N points be evenly spaced along the circumference 
of a circle of radius r. If the first point has polar co- 
ordinates (r, ~0 = (~), then those of the general point j 
are (r, ~5 = 6+2~i/N), while the cartesian coordinates 
have the values 

xj = r cos ~j, yj = r sin %, j = 0, . . . ,  ( N - l ) .  (1) 

The Fourier transform Tc~. of the above set of 
points is defined by 

_W--1 

Toir.(R, ~)  = .~, exp [2~zi(xjX+ysY)] . (2) 
j=O 

I t  is conveniently transformed from the cartesian co- 
ordinates X, Y of Fourier space to polar coordinates 
R, ~5, defined by 'the equations 

X = R cos ~5, y = R sin ~5. (3) 

Thus, remembering the definition of the scalar product, 
we have 

Tc~.(R, ~)  = .~  exp [2~irR cos (~-~5)] • (4) 
5 = 0  

To get rid of the cosines we replace the exponential 
functions in the sum by a series of Bessel functions 
Jp, employing the relation (Watson, 1944) 

exp (ix cos a) = ~,~ iPJp(x) exp (ip~) . (5) 
p~--Oo 

After reversing the order of summation and inserting 
the values of ~i, we have 

co 

Tcir.(R,~b) = .~  iPJp(2~rR) 
p------Co 

_~T--1 

× exp [ip(~b-~)] • exp ( - 2 n i p j / N ) .  (6) 
5 = 0  
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The last sum equals N when p = n2V and vanishes 
otherwise, so tha t  finally 

oo 
Tc~.(R, q~) = N .~, Jn~(2rerR) exp [inN(qS+ re /2-~)] .  

n~--co 
(7) 

Although this expression, involving Bessel functions 
of high order, appears to be quite complex, its actual 
nature  is much simpler, owing to the character of these 
functions. While the term with n = 0 is the function 
J0 which resembles a cosine with slowly decreasing 
amplitude, all other terms contain Bessel functions of the 
high order nN(n  = +1, ±2 . . . .  ), h r having a three- or 
possibly four-digit value. Each of these functions 
remains close to zero until its argument has come close 
to the value of its order. For still larger arguments the 
functions are of oscillatory nature,  with slowly de- 
creasing amplitudes. (For an excellent figure, repro- 
duced from Jahnke & Erode (1943), see Cochran, Crick 
& Vand, 1952.) More precisely (Jahnke & Erode, 1943; 
Watson, 1944), for large p the first maximum of Jr(x) 
is at  x ~ p+0.81aVp, while the oscillations for values 
of x larger than p are approximately described by the 
asymptotic  expression 

Jr(x) ,-, (2/rex)½[Pp(x) cos ( x - ( 2 p +  1)re/4) 
+ Qp(x) sin ( x - ( 2 p + l ) r e / 4 ) ] ,  (8) 

where 

Pp(x) = 1 -  (4p 9 -  1) (4p~-9)/2[(8x)9+. . .  , 
Qv(x) = (4p~- l ) /8x+ . . . .  

The dependence of the transform on the radial co- 
ordinate R is the following. For small values of R it  
is described by Jo(2rerR), which starts  at  uni ty  for 
R = 0 and oscillates about the R axis with an am- 
plitude approximately given by (re2rR)-½ and a dis- 
tance between successive zeroes close to ½(l/r). Since 
a typical value of r is several hundred /~ there will 
be several hundred oscillations for each /~-1 of R. 
When 2rerR reaches the value N, J ~  and J _ x  = 
( -  1)YJx star t  contributing, and more generally, 
each time 2~rR passes one of the values nN(n  = 
1, 2, 3 , . . . )  the pair of functions J ~  and J _ ~  
will begin to assume non-negligible values. All these 
functions have the same highly oscillatory nature as 
J0 once they  are past  their first maximum, the oscilla- 
tions being approximately of the same period 1/r in 
R and, eventually, of the same amplitude, (re2rR)-½. 
The initial values of the amplitudes of the oscillation 
are rather  larger than  (re2rR)-½ but  less than 
(2/re)½(4regr~R~-ngNg)-~ (Watson, 1944). The high- 
order Bessel functions thus impart  to the transform 
the characteristic feature tha t  whenever 2rerR passes 
one of the values nN(n = 1, 2, 3, . . .  ) a band appears, 
with a sharp inside edge and an outside tail of slowly 
decreasing amplitude. In  terms of R these edges occur 
whenever R = nN/2rer = n/a, which reflects the dis- 
crete nature of the circle, a being the distance between 
neighboring points. The rapid oscillations are a conse- 

quence of the large-scale features of the circle, and 
indeed the term n = 0 is the  transform of a con- 
tinuous circle: 

T¢ont.oir. = Jo(2rerR). (9) 

With regard to the angular dependence of T¢ir. 
we note tha t  the term n = 0 has circular symmetry.  
All other terms are of highly oscillatory nature, and 
have, individually, symmetry  axes of the order InlN. 

Turning to the scattering intensity to be expected 
for the discrete circle, the square of the modulus of T 
shows rapid fluctuations of period 1/r in R and of 
periods 2re/ (n-n ' )N in ~b. These fluctuations will 
scarcely be observable with the short-wavelength 
radiations required to analyze the fine structure of the 
object. Furthermore, usually not one but  many circles 
or aggregates of such circles with different r, N, 
values will scatter at  the same time, so tha t  the fluc- 
tuations will be averaged out. To obtain a quant i ty  
characteristic of the observable scattering intensity 
we form the square of the modulus of T and average 
it  over the rapid oscillations in R and in ~b. 

The effect of averaging over q~ over a range of the 
order 2rein is tha t  all cross terms vanish, so tha t  
<lTcir.l%v. has circular symmetry  and contains only 
the squares of Bessel functions. Thus 

[aR] 
<[T¢~r.12>av. ~ N2[<J~(2rerR)>av. + 2 .~ <g~v(2rerR)>av.] , 

n=l  (10) 

where [aR] signifies the largest integer which is smaller 
than  or equal to 2rerR/N = aR. The averaging over 
the oscillations in R cannot be carried out exactly, 
but  useful results will be obtained later on by employ- 
ing the asymptotic  expansion (8). 

Consider next the transform of a set of points ar- 
ranged at  equal distances along a circular arc. I t  is 
essentially given by (6), except tha t  j runs only to 
( M - 1 ) ,  M being the total  number of points. The sum 
over j is a geometrical series and results in a function 
closely related to the Laue function of crystallography. 
To simplify the phase constant, we choose the origin 
of the angular coordinates half-way along the arc, so 
tha t  ~ = - r e ( M -  1)/N and obtain, 

co 
Tar° (R, qS) = M .~, dv(2rerR) 

p~ --co 
[sin (repM/N) ] 

× exp [ip(~b+~re)] [Ms~n ( - ~ - ~ J  " (11) 

0.13 

~ - - 0 " 2 2  --0"09 

Fig .  1. T h e  f u n c t i o n  SM(X) of e q u a t i o n  (12), 
fo r  M >> 1 ( N > >  1). 

11" 
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The last factor is periodic in T with the period _h r, and 
at tains its maximum value 1 whenever p is a multiple 
of N. Fig. 1 shows a graph of the related function 
(p/N -~ x) 

SM(x) = M -1 (sin gMx)/sin ~ (12) 

in the neighborhood of one of its maxima for which 
x -- n, p = nh  r. (For the graph, M (and thus N) are 
assumed to be large.) The values of SM(p/N) decrease 
as the difference between [p] and the nearest multiple 
of N increases. The first zero is reached when [ p - n N  l = 
N / M  so tha t  the decrease of the factor is the more 
rapid the larger the angle subtended by the arc. 
Values of p for which Ip-nN[ > N / M  successively 
give rise to negative and positive contributions of 
ever decreasing magnitude. Thus for any sizeable 
fraction of the complete circle the transform contains 
essentially only Bessel functions whose order is in the 
neighborhood of multiples of N, the number of points 
tha t  the completed discrete circle would contain. 

The transform shows bands similar to those of the 
discrete circle. These bands occur again whenever R 
passes a multiple of l/a, but  their edges are not quite 
as sharp as in the previous case, since the contribu- 
tions to the n th  band involve not only J~v but  also 
Bessel functions of neighboring orders. 

The transform shows the same rapid oscillations in 
R of period l[r discussed previously. In  addition, the 
terms with p near nN(n ~= 0) show rapid oscillations 
in ~ while those with p near 0 exhibit slow variation 
in the angular variable. Indeed, the low-order terms 
of Talc represent the transform of a continuous arc of 
radius r, extending in angle from - 0  to + 0 ,  where 
0 -- gM/N ,  

co 
= .Z J~,(2~rR) exp [ip(~+½u)] (sin pO)/pO 

p~--Co 
OO 

= Jo (2~rR) + ~ i~J~,(2~rR) [ sin p ( ~  + O) 
p = l  

- s i n  p(q~-O)]/pO. (13) 

King & Lipscomb (1950) have given numerical values 
for the function 

c o  

A(a, O) = . Z  (2/p)i~'J~,(a) sin pO 
p = l  

in terms of which the second sum above equals 
[A(2~rR, qS+O)-A(2~rR,  ~5-0 ) ] /20 .  

To obtain a quant i ty  representative of the ob- 
servable intensity we average over the high-frequency 
oscillations in ¢ and B. As a consequence no cross 
terms between the various groups of Bessel functions 
appear, and 

([T~o(R, ~5)[9)a~. ~ M2[(lTcont.~rc(R, (~))12>av. 
[a2] _~/2 

+2 ~ < ]  ~ exp ip(qS+½~)J~.~-+p(2~rR)SM(p/N)[~}a~.]. 
n=l  p=--Z'/2 (14) 

As in (10), the first term is representative of the large- 
scale structure, while the remaining sum accounts for 
the microscopic features of the object. 

T r a n s f o r m s  of cy l inde r s  

Consider a circular cylinder formed by  suitably curving 
a rectangular net of points, one edge of the primitive 
umt  cell, of length d, being parallel to the cylinder axis 
z, while the other has the approximate length a. 
This cylinder may  be generated by replacing each 
point of a circular set by a perpendicular row of Q 
evenly spaced points having a repeat d. This operation 
is one of folding the set of Q row points with the circular 
point set (1) (see for instance Waser & Schomaker, 
1953). The cylindrical coordinates of the resulting 
points are (r, ~j, zq), where 

zq = qd- (Q-1)d /2;  q = 0, 1, 2, . . . ( Q - l )  (15) 

(choosing the z coordinates symmetrical ly relative to 
z = 0) and where the (r, ~j) are identical with the 
plane polar coordinates discussed previously. The 
transform of this cylinder is defined by  

.N--1 Q-1 
Trect .  : -  ~ • e x p  2gi(xjX+yjY+zqZ). (16) 

i=0 ~=0 

The sums over j and q are independent of each other 
so tha t  in terms of the cylindrical coordinates (R,~b, Z) 
of Fourier space 

Trect. (R, ~5, Z) 
Q-1 

= Tc~.(R, qS) exp [ - ~ i ( Q - 1 ) d Z ]  ~ exp (2~iqdZ) 
q=0 

= Tci~.(R, qS) sin (QxedZ)/sin 7~dZ. (17) 

This is the product of the transforms of a circular point 
set with tha t  (if a row of Q evenly spaced points, in 
accordance with the folding operation just  discussed. 
The second factor is the Laue function which is shown 
by  Fig. 1, provided the scales of the coordinate axes 
are suitably modified and Q >> 1. I ts  pr imary maxima 
occur whenever Z = m/d, m = 0, ±1, ±2, . . . .  They 
are of height Q and have widths of the order 1/Qd in Z. 
The transform is thus restricted to the neighborhood 
of planes Z = m/d, corresponding to the familiar layer 
lines. The dependence on (R, ~b) is the same for all 
values of Z and identical with tha t  of the two- 
dimensional case. The intensity distribution associated 
with each layer is the one discussed for the discrete 
circle and the basic structure of the net  is reflected by  
the location of the sharp edges of bands at  R = n/a, 
Z = mid. A central section through the transform 
containing the Z axis thus shows a structure reciprocal 
to tha t  of the original net. " 

Another simple cylinder results from similarly 
curving a diamond-type net with a centered rectangular 
unit cell, so tha t  the rectangle edge of length d is 
again parallel to the cylinder axis, the other edge being 
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of length a. This cylinder may  be generated by  the 
superposition of a cylinder of the type just  discussed 
with an identical one, of the same axis, but  displaced 
by a distance d/2 parallel to z and rotated through 
7~/N (half the difference in angular coordinates of two 
adjacent points of the original circular set). The effect 
of the translation on the transform of the cylinder is 
multiplication by exp (2xdZd/2), while rotation by 
~/N is taken into account by replacing the angle 6 
by O+n/N. The transform of the diamond cylinder is 
the sum of the transforms of these two cylinders, 
whence 

Tdia,,.(R, qh, Z) sin Q~rdZ oo 
- sin ztdZ "Y' Jn~(2~rR) 

n = - - O O  

x exp [ inN(¢+{-x-6)][ l+exp i x ( -n+dZ)] .  (18) 

If Q > 1 the Laue function is different from zero only 
in the immediate neighborhood of Z = mid so tha t  
the last factor in the above expression may  be re- 
placed by (1 + ( -  1)n+m), which vanishes unless (n+m) 
is even. Thus, while the cross-section of each layer is 
described by  2 (sin Q~rdZ)/sin zdZ, the dependence on 
(R, ~)  is the following: 

Even layers (Z = 2re~d): 

N 2 J2nN(2~rR) exp [i2nN(~b+½zt-6)].  (19) 
n ~ - - O O  

Odd layers (Z = (2m+l)/d): 

N 2 J<2n+s)~(2x~rR) exp [i(2n+l)N(q~+½~-6)] . 
n ~ - - O 0  

This transform shows again a band structure, and in a 
planar  section containing the Z axis the edges of these 
bands lie near the nodes of a centered rectangular net. 
The edges of the rectangular unit cell of this net are 
of length 2/d parallel to Z and 2/a parallel to R, so 
tha t  this net  is again reciprocal to the original one. 
Note tha t  only even layers contain the term J0(2~rR) 
characteristic of the continuous cylinder. 

For the special cases tha t  d = a/~/3 and d = ~/3.a 
the basic nets are hexagonal, one edge of the basic 
hexagon being parallel to the z axis in the first case 
and perpendicular in the second (Fig. 2). 

(9 

"-... - "1 1" 

Fig. 2. Two or ienta t ions  of a hexagonal  net .  

No detailed t reatment  will be given of the transforms 
of cylindrical fragments resulting from folding a row 
of points with points arranged along a circular arc. 
These transforms are related to those of discrete arcs 
in exactly the same way as discussed above for circular 
sets. 

We discuss next the transform of a composite tube, 
made up of a number of concentric rectangular cyl- 
inders of the same length, formed of nets with the 
same unit cell. The radii of the various cylinders are 
to differ by multiples of a constant, t. Thus, if rg is 
the radius of the gth cylinder and 2Vg the number of 
points along its circumference, 

rg = r+gt, 2zrg ,'~ Nga, 

Ng ~ N+2zgt/a, g = 0, ±1, ±2, . . . ± G ,  (20) 

r and N being the averages of rg and Ng. The number 
of cylinders is K = 2G+l .  (The final result applies 
with appropriate meaning of the symbols to both odd 
and even K's.) We assign the angular constant 6g to 
the gth cylinder and describe its position along the 
z axis by adding the constant Qg to all z coordinates 
of (15). The transform reads 

Tx ' rect.(R, ~i, Z)  

o co 
sin QzdZ Z, Ngexp (2~iggZ) ~ JnNg(2~rgR) 
sin z d Z  g=-a n=-oo 

exp [inNg(q) + ½7e- 6g)] . (21) 

We are interested again in the square of the modulus 
of this function, averaged over rapid oscillations in ~b 
and R. This averaging process necessitates assumptions 
regarding the values of the constants 6g and ~g. The 
angular constants 6g of the different cylinders are 
presumably random in any actual case; even if two 
row lines of neighboring cylinders should be in exact 
juxtaposition, this phase relation will be lost for 
adjacent rows. However, several different assumptions 
regarding the translational constants Qg are of interest. 
They are: (1) All Qg have the same value, arbitrari ly 
set equal to zero. (2) The Qg are distributed randomly. 
(3) The Qg depend linearly on g, Qg = g.A ((1) is a 
special case of this). The physical implications of these 
three cases will be discussed later. 

Forming the square of the modulus of (21) and 
averaging over rapid oscillations in ~ causes all cross 
terms between high-order Bessel functions associated 
with different values of n and between them and J0 
to vanish. Furthermore, owing to the randomness of 
the 6g, cross terms involving different g's tend to 
vanish also, unless n = 0. Thus when n # 0 the 
characteristic bands described earlier appear again, 
having edges where R = n/a(n = 1, 2, 3 , . . . ) .  The 
structure of these bands is independent of the behavior 
of the Qg. The nth band represents the sum of the 
squares of the Bessel functions of the orders +nNg. 
As far as these bands are concerned, the intensities 
due to the component cylinders are additive. 

There is, however, interference between the K terms 
containing Jo(2~rrgR) (n = 0). The details of this inter- 
ference depend on the assumptions regarding Qg and 
will now be discussed. 
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Case 1: all Qg = 0 
The sum of the K terms with n = 0 shows circular 

symmetry and is closely related to the transform of a 
tube consisting of K = 2G+1 continuous cylinders of 
length L, 

sin ~ L Z  o 
Tx, co,t.(R, Z) .~ 2XergJo(2XergR ) . (22) 

7~Z g=-a 

(This transform has been normalized differently from 
(9) and (13). I t  does not show any layer structure.) 

To investigate the behavior of the sum over the Jo 
in (21) or (22) we employ the leading term of the 
asymptotic expansion (8). Thus 

G 
~ =_ ~ N~Jo(2~r~R) ~ ( ~ R )  --~ 2 ;  (1-~ /2~)  

g=--O g 
× (N+2x~gtla) cos [2g(r+gt )R-=/4]  , (23) 

where terms in (Gt/r) ~ ~ (W/D) 9 have been neglected 
(W is the wall strength, D the average diameter of the 
tube). Expanding the cosine and summing over g, 
we obtain in the same approximation 

~,1 "~ ( ~ r R ) - i N K  [cos (2~rR-~ /4 )  

x SK(tR) + sin (2xlrR--7~/4) (W/2D)CK(tR)],  (24) 
where 

S~(tR) = (sin ~ K t R ) / K  sin ~tR 
and 

Cz~(tR) = 

(K cos g K t R  sin xetR-cos ~tR sin ~eKtR)/K ~ sin ~ z~tR. 

Fig. 1 represents Sx, while C~ is proportional to 
its derivative. We are interested in the square of (24), 
averaged over fluctuations of the period l[r in R. 
The squares of the cosine and sine of argument 
(2:grR-x~[4) average to ½, their product to zero, so 
that  

( [Z ' z l~ - )a~ .  ,.~ (N~K~/2~rR) 

× [S~(tR)+(W/2D)~C~x(tR)]. (25) 

The second term will be dropped since terms in (W[D) ~ 
have already been neglected and since C~ is small 
compared to S~ (see Fig. 3). If the higher terms of 
the asymptotic expansion (8) are included in (23) and 
terms in (W/D) ~ axe neglected we find that  the final 
result may be expressed in terms of J0: 

(]Zl[~)av. ~ (NK) ~ (J~(2~rR))avfl~(tR), (26) 

Even for small values of R this expression seems to be 
better than is warranted by its derivation from an 
asymptotic expansion, as evidenced by more detailed 
analysis. (It tends, for instance, to the correct limit 
when R approaches zero.) Fig. 3 contains a graph of S~ 
versus R (for K >> 1). I t  is periodic in R with the 
period l[t. The main maxima occur when R = 
j[t  (j = O, 1, 2, . . .  ), are of height 1, and have a width 
of the order l /Kt .  Expression (26) thus has a maximum 
of value (NK) ~ at R = 0, followed by much smaller 

subsidiary maxima of height (t/2g2jr)(NK)~at R=j / t .  
All layers have the same structure for this case. 

~ (~) 

! ! 

Fig. 3. The funct ions S~(x) and G~(x) defined by  the  ex- 
pressions following equat ion  (24), for K >~ I. 

Case 2: random distribution of the ~g 

The sum over all terms with n = 0 contains ad- 
ditional phase factors which all had unit value in (23), 

Z~ ---- .~, NgJ  o (2grgR) exp (2gi~gZ). (27) 
g 

If the square of this sum is formed, the cross terms 
tend to vanish when Z # 0, owing to the randomness 
of the differences between the Qg, and only the squares 
remain. However, when Z = 0 all phase factors have 
unit value and we obtain the previous result (26). 
Therefore, 

{ ~Y N~(J02(2grcR))a~., Z = m/d =~ O, 

(NK)2(J~(2xerR)}av.S~(tR) , Z = O. 
(28) 

The central portion of the equator has thus the same 
structure which all layers including the equator had 
in Case 1. For the central portions of the other layers 
there is in effect no coherence between the amplitudes 
due to the various component cylinders, and the 
intensities axe additive. The maximum intensity of a 
layer (at R = 0) is proportional to K, the number of 
such cylinders, while it is proportional to K S for the 
equator. 

Case 3: ~g = g.A 

The sum over the terms n = 0 is now 

~,a -- .a~ NgJo(2XergR) exp (27dgAZ) . (29) 
g 

A development for the ruth layer (Z = m/d) similar to 
the one leading to (26) results in 

([~Va]~av. ~ (NK)~(g~(2xerR))av. 

× [ S ~ ( t R - m A / d )  + SK(tR+mA/d)]~]4 . (30) 

There is thus a shift of the maxima of S~ from 
R = j / t  in (23) to R ---j/t+mA/dt. Again the equator 
is identical with that  for the previous two cases, while 
the mth layer shows the main maximum at R - -  
[mA/dtl (provided m[A[ < d/2; otherwise the main 
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maximum will occur for the smallest value of R = 
[ j -mA/d l / t ) .  In  any planar section through Fourier 
space containing the Z axis this maximum will of 
course show on both sides of the line R -- 0. 

Returning to the general discussion, we will briefly 
deal with the tube whose component cylinders are 
based on centered rather than primitive rectangular 
unit  cells. The centered character of the unit cells will 
be reflected by  the nature of the band structure of 
([TI~)~., as discussed in the foregoing section (fol- 
lowing equations (19)). Furthermore, for odd layers 
the central portion containing the J0's will be absent 
so tha t  the above remarks concerning the ~a apply 
here to equator and even layers only. 

S t r u c t u r e  factors  

The previous discussion has concerned itself entirely 
with sets of points each of which has to be replaced 
by the contents of a suitably oriented 'unit  cell' for 
any actual case. Let the unit cell of a sheet, before 
being curved into a cylinder, contain H atoms with 
structure factors fh(h = 1, 2, . . . ,  H). For simplicity 
we assume a rectangular set of axes, x, y, z, of lengths 
a, d, t. The parameters of atom h are uh, vh, wh, and 
we assume tha t  after the sheet has been curved, 
y points parallel to the z axis and z along the radial 
direction of the resulting cylinder (while x is per- 
pendicular to both, Fig. 4). The coordinates of atom 
h in the 'unit  cell' whose origin has the coordinates 
(r~, q~/, zq) are given in Fig. 4. 

WhZ/ P(r,g+wht, q)j-UhCl/r~,Zq+Vhd) 

/ 

Fig. 4. Cylindrical  coordinates  of the  center  of a t o m  h in 
'un i t  cell' wi th  origin a t  (rg, ~ ,  Zq). 

The Fourier transform of the resulting aggregate of 
atoms is the sum of the H transforms of the point 
sets corresponding, severally, to the locations of all 
atoms h, each multiplied by the appropriate atomic 
scattering factor f~. While for crystals, owing to the 
nature of lattices, it is possible to factor the complete 
transform into contributions representing the lattice 
type, the unit-cell contents, and the internal structure 
of the scattering atoms, no such exact factorization is 
possible in the present case. A similar separation does 
occur, however, in the approximation tha t  the Bessel 
functions involved may be replaced by their asymp- 
totic expansions. 

A typical term in the complete transform is 

H 
Z f h  exp [2~i Z (zq ÷ vhd)] J ~ )  [2~R (rg ÷ wht)] 

h----1 
× exp [inNg(qS÷½r~--Sg+uha/rg)] . (31) 

I t  was shown previously tha t  (in part  owing to the 
randomness of the ~g) (ITle)a~. does not contain cross 
terms between Bessel functions of different order, so 
tha t  for n ~= 0 the square of the modulus of the above 
expression, averaged over rapid oscillations, represents 
the total  contribution of this term to the intensity of 
a given band. The total  intensity of this band will be 
given by the sum of all such contributions (31) which 
have the same value of Inl. 

Accordingly, the leading term of the asymptotic 
expansion (8) is introduced into (31), followed by 
squaring and averaging. Neglecting terms in wht/r and 
using Nga/rg = 2z we obtain eventually 

I ~ g  ,-- (2z2rgR) -1 ~ .~,fiJh" exp [2~im(vh--Vh,)] 
h h" 

cos [2r~Rt(wh--Wh,)] exp [2,'zin(uh--uh,)] . (32) 

If higher terms of the expansion (8) are included in 
this development, the result can be recast in terms of 
Jn~v~. Furthermore, the double sum can be expressed 
as the sum of two squares, so tha t  finally 

I~,vg ~ (J~,v¢(27~rgR))~v.½[IF~,m(R)] ~ + IF~,, ~(-R)]2] ,  

where (33) 
H 

F~,m(R) = Z f h  exp [2rd(nuh+mvh+Rtwh] . (34) 
h=l  

Note tha t  Fn,,n(R) does not depend on the particular 
cylinder g whose contribution we are considering. 

The terms n = 0 require separate t reatment ,  as 
there may  be interference among the amplitudes due 
to the different cylinders, depending on the behavior 
of the ~g and the value of m. I t  turns out, however, 
tha t  again the same factor as in (33) separates out and 
terms with n = 0 result in formulas analogous to 
(26), (28) and (30), but  multiplied with ½(IF0,m(R)J2+ 
IF0,m(-R)I2). All this is a consequence of our dealing, 
in the approximation chosen, essentially with ex- 
ponential functions as is the case in the customary 
t rea tment  of crystalline reflections. Our approximation 
is good only when t ~ r and a < r, which implies 
small change in directions of the axes as one progresses 
from one 'unit  cell' to the next along the circumference 
of the cylinder. 

The complete expression for the intensity distribu- 
tion in reciprocal space, caused by a composite tube 
consisting of K concentric cylinders, is thus 

sin 2 QredZ 
I (Z ,  R) ~ 2sin 2 xedZ {(EXil2)av'[XF°'m(R)12 

JaR] 
+ IF0,~(-R)12] + ~" N~(J~,g(27~rgR))a~..[IF,,m(R)] 2 

n= l  

+lF~,m(R)12+lF~,m(-R)]2+]F~,, , (-R)]2]} , (35) 
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where <l~'iI2>av. is tO be substi tuted from equations 
(26), (28) or (30) respectively, depending on which of 
the Cases 1-3 applies. The symbols Ng, rg, Q, and 
JaR] are defined by  (20), (15) and the remark following 
(10), while the indices n and m characterize the edges 
of the bands situated at  R = n/a, Z = m/d. 

The intensity function (35) has radial symmetry,  
rapid fluctuations in ~ having been averaged over. 
The intensities of the various bands, as well as those 
of the central portions of the layers described by  the 
functions J0, are largely determined by  the structure 
factors (34). We note tha t  these factors (34) vary  
continuously with R so tha t  the R-dependence of the 
various features is modified also. The effects of center- 
ing the unit  cells of the original nets are, of course, 
contained implicitly in the structure factor and need 
no further discussion. (A particular case (the diamond 
net) has been dealt with earlier.) 

The assumption of rectangular nets in a particular 
orientation is essential only for the exact form of (34) 
and not for the fact tha t  a structure factor like (34) 
separates out. Nevertheless, even for more general 
types of 'unit  cells' and their orientation relative to 
the cylinder it  remains practical to describe the con- 
tents of each 'unit  cell' in terms of rectangular co- 
ordinate axes oriented as above. 

In  summary,  some important  characteristics of the 
scattering of the tubular  objects discussed are the 
following: The nature of the intensity function at  
small values of R is determined by the over-all struc- 
ture of the tube, without much regard for its atomic 
make-up. The positions of the edges of the bands are 
characteristic of the type and the metric of the net  
underlying the structure, while the intensities of all 
features are largely determined by the contents of the 
'unit  cell'. Physical insight pertaining to the outside 
tails of the bands is obtained if it is remembered tha t  
any central planar section of a Fourier transform is 
determined by  the ~rojection of the contents of 
physical space on a plane parallel to this section (see 
for instance Waser & Schomaker, 1953). Thus, if the 
tube is projected on a plane containing the z axis the 
tails contained in the corresponding section through 
the transform are the result of the continually de- 
creased spacings as one moves from the center line of 
the projection to its rims. 

Discuss ion  

The results of the foregoing sections find application 
to the following physical situations: 

The scattering of a tube consisting of concentric 
cylinders with no interactions corresponds to Case 2 
in which the Qg are randomly distributed. If there is 
interaction among the component tubelets, Cases I or 3 
may  apply, or still other assumptions regarding the 
behavior of the ~Og may  be made. 

Cases 1 and 3 have, however, an important  bearing 
on the problem of the scattering due to a wound-up 
sheet, as will now be discussed. For simplicity we will 
again use points rather than  'unit  cells', the connection 
between the two now being dear.  

Consider a rectangular net  wound up along a planar 
spiral whose radius increases by  t each time around, 
and let the net  be so oriented tha t  one of its principal 
axes remains parallel to the z direction. The resulting 
set of points has much in common with tha t  of Case 1, 
where all ~g = 0. Thus, a projection on a plane con- 
raining the z axis of a tube made of concentric cylinders 
with all ~g equal will differ very little from a like 
projection of a sheet wound up in the fashion described. 
Since these projections determine the contents of ap- 
propriate sections through the corresponding trans- 
forms, these sections will show great similarity. To 
tMs extent the above discussion of Case 1 apphes to 
the wound-up sheet. This correspondence holds to a 
lesser extent for sections inclined to the Z axis, the  
largest differences being expected for sections per- 
pendicular to Z. While the intensity function for the 
composite tube has essentially circular symmetry,  
tha t  for the wound-up sheet will contain terms de- 
pendent on ~5 since the transition from one layer to 
the next  occurs here in continuous dependence of ~. 
The correspondence between the two transforms will 
be the closer the smaller t/r. 

If next a rectangular net  is wound up on a slant, 
both of its sets of principal row lines are transformed 
into sets of spiral helices of slowly increasing radii 
(crossing each other at right angles). Considering the 
points along one of the helices of the set with the  
smaller pitch, we note a uniform increase of their  
z coordinates which is to some extent reflected by the 
behavior of the ~g of Case 3. This correspondence is 
the closer, the smaller the pitch of the helix and the 
smaller t/r. The central portions of the layers of the 
transform of this coiled sheet will thus be approximated 
by  those described for Case 3 with suitably changed 
spacing of the layers. However, winding the sheet on 
a slant has also twisted the orientation of the net  so 
tha t  the positions of the bands are affected. Viewing 
the tube perpendicularly to its axis, all portions of the 
net  exactly in front of this axis will have suffered a 
twist by the angle of the slant, while all portions 
exactly in back will have suffered the opposite twist. 
Correspondingly, in any section through the transform 
containing the Z axis, there will now appear two edges 
for each edge of the case discussed in the foregoing. 
The location of these two edges may  be obtained by  
rotating the section of the previous transform by plus 
or minus the angle of the slant. Sections not containing 
the Z axis will again show angular dependence, in 
contrast to corresponding sections through the trans- 
form of Case 3. 

Analogous effects are expected for tubes made by 
winding up nets of lower than  rectangular ss~mmetry. 
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Finally, if a sheet consisting of more than one layer 
of unit cells is wound up, the scattering of the resulting 
tube shows features additional to those discussed. An 
important practical case is the one in which there is 
no interaction among the different layers of the sheet, 
correlations existing previous to the curving of the 
sheet being effectively destroyed by it. If there are 
I such layers, the essential traits of the scattering of 
such a coil are similar to those of a tube consisting of 
as many concentric tubelets as the coil has windings, 
each tubelet containing I evenly spaced simple cyl- 
inders with the following pattern of @g's. Let t 1 be 
the radius difference for adjacent cylinders within a 
tubelet, t 2 the distance between (say) the first cylinders 
of adjoining tubelets (t 2 need not be a multiple of t~). 
The @g within a given tubelet have random values, 
while the @g of all cylinders separated by multiples of 
t~ are related as in Case 1 or 3, depending on how the 
sheet is coiled. Accordingly, the intensity function 
behaves as discussed in the foregoing with the follow- 
ing changes and additional features. The distance t 
is replaced by t 2. Additional reflections appear on the 
equator, at R = l / t ~  ( l =  1 , 2 , 3 , . . . ) .  Owing to the 
randomness of the @g within a tubelet, no further re- 
flections involving the reciprocal distance 1/tl appear. 

!i 

- t 

i . • . : 

An example* 
Fig. 5 shows (a) an electron-microscope picture of a 
halloysite tube about 40,000 A long with an average 
thickness of about 700 A; (b) its diffraction photo- 
graph with a wavelength of 0.038 A (both reproduc- 
tions by courtesy of Drs Taggart, Milligan & Studer 
(1954)). The diffraction pattern represents the in- 
tensity function on the surface of the (stationary) 
sphere of reflection oriented so that  the Z axis is 
tangent to it. The picture thus approximately shows 
the contents of a planar section through reciprocal 
space containing the Z axis. 

The pattern is in broad agreement with that  ex- 
pected for a hexagonal sheet with d = a~/3 -- 8-78 A 
( a = 5 - 0 7  A) wound up on a slant of about 2½ ° . 
Equatorial reflections occurring when Z is a multiple 
of 0-1445 A -1 reveal that  this sheet consists of layers 
of thickness t 1 --6.92 2~. The main maxima on the 
central portions of even layer lines (m even) may 
tentatively be interpreted to correspond to A' ~ 0.8 A, 
where A' is the difference between/I  and the nearest 
multiple of d. Subsidiary maxima at distances of about 
0.02 A -1 from the corresponding main maxima then 

* Modified 15 November  1954. 

(a) (b) 
Fig. 5. (a) Electron-microscope pic ture  of halloysite tube  and  (b) its scat ter ing in tens i ty  (Taggart ,  Milligan & Studer ,  1954). 

The numbers  represent  values of layer indices m. The black borders a round  the tube  indicate the  region used in the dif- 
fract ion photograph .  
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indicate tha t  the wound-up sheet has a thickness of 
the order of 50 A, which is in accordance with the 
width of the 6.92 J~ equatorial reflections. The ap- 
parent  widths of the main maxima on even layer fines 
might suggest tha t  there is little if any coherence from 
one winding to the next. This, however, would make it  
hard to understand the linear dependence on the layer 
index m of the distance from the Z axis of these 
maxima. Very likely A' is not constant and par t  of 
the broadening in the R direction is caused by '  its 
variation, so tha t  the above value of 0.8 J~ is an 
average only. Indeed, it  appears from the electron- 
microscope picture of the object tha t  the winding of 
the sheet is not completely regular. 

Some weak reflections of the pat tern  reproduced in 
Fig. 5 are not accounted for. They may  be caused by  
some fragments which are not par t  of the tube itself 
or may  possibly be explained by a more exact theory 
of the scattering of a wound-up sheet which might also 
account for the fine structure of some of the bands. 
No a t tempt  has been made to calculate the intensities 
of the various features in terms of the basic structure 
of the sheet. 

Some of the fine structure of the bands may  be 
interpreted in analogy to the mixed reflections ex- 
pected for a rotating crystal in which the layers are 
arranged regularly. This is most apparent for the bands 
characterized by n = 1, m = 3 for which the analogues 
of (hkl) = (130), (131) and (132) are present, where we 
have identified n with h and m with k, where 1 refers 
to the reciprocal-space coordinate perpendicular to the 
layers, and where the identi ty distance from layer to 
layer is 2t 1 = 13.8 J~. 

This interpretation would imply tha t  the layers 
making up a curved sheet have not become disordered 
through the curving. While order with respect to the 
z coordinate is not surprising, it  is so with respect to 
the angular coordinate q0. To achieve it  the unit  cells 
of all layers along the circumference of the cylinder 
must match. Assuming an average radius of the tube 
of 350/~ and a thickness of the sheet of 50 A, as much 
as 7 % compression on the inside and 7 % expansion 
on the outside are needed if the sheet is left intact. 
More likely would be the existence of a sufficient 

number of flaws or cracks to relieve par t  of the strain 
while the radiM alignment, is essentially maintained. 
Large enough fragments would have to be left intact  
to maintain a sufficient degree of coherence along the 
circumference. 

Note added 15 November 1954.--Prof. P. P. Ewald 
has kindly sent me reprints of three papers by  
Jagodzinski & Kunze (1954a, b, c) and the proof of a 
paper by Whit taker  (1954). Some of the results of the 
present paper are similar to results of these authors. 
Honjo & Mihama (1954) have very recently published 
electron-diffraction photographs of tubular  halloysite 
specimens which they  interpret by analogy with the 
case of a rotating single crystal. 

I wish to thank Drs W. O. Milligan and H . P .  
Studer for bringing this problem to my  attention, for 
comments regarding it, and for permission to use the 
photographs reproduced in Fig. 5; and Dr Gerald R. 
MacLane for a discussion regarding Bessel functions. 
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